Categories
BLOG

cbd model

The CBD Mortality Indexes

Modeling and Applications

Wai Sum Chan, Johnny Siu Hang Li, Jackie Li

Research output : Contribution to journal › Article

Abstract

Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.

Access to Document

  • Mortality Mathematics

Cite this

  • APA
  • Author
  • BIBTEX
  • Harvard
  • Standard
  • RIS
  • Vancouver

Research output : Contribution to journal › Article

T1 – The CBD Mortality Indexes

T2 – Modeling and Applications

AU – Chan, Wai Sum

AU – Li, Johnny Siu Hang

N2 – Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.

AB – Most extrapolative stochastic mortality models are constructed in a similar manner. Specifically, when they are fitted to historical data, one or more series of time-varying parameters are identified. By extrapolating these parameters to the future, we can obtain a forecast of death probabilities and consequently cash flows arising from life contingent liabilities. In this article, we first argue that, among various time-varying model parameters, those encompassed in the Cairns-Blake-Dowd (CBD) model (also known as Model M5) are most suitably used as indexes to indicate levels of longevity risk at different time points. We then investigate how these indexes can be jointly modeled with a more general class of multivariate time-series models, instead of a simple random walk that takes no account of cross-correlations. Finally, we study the joint prediction region for the mortality indexes. Such a region, as we demonstrate, can serve as a graphical longevity risk metric, allowing practitioners to compare the longevity risk exposures of different portfolios readily.

The CBD Mortality Indexes Modeling and Applications Wai Sum Chan, Johnny Siu Hang Li, Jackie Li Research output : Contribution to journal › Article Abstract Most extrapolative ]]>